Docker 从入门到实践

最近在看 CI/CD 的相关的东西,需要先看 Docker 的相关概念,稍微记一下。

Docker 从入门到实践

Docker 技术基于容器这个概念,指对进程进行封装隔离,属于操作系统层面的虚拟化技术。隔离的进程独立于宿主和其它的隔离的进程。

Docker 在容器的基础上,进行了进一步的封装,从文件系统、网络互联到进程隔离等等,极大的简化了容器的创建和维护。使得 Docker 技术比虚拟机技术更为轻便、快捷。

按照这个说明,windows 运行 Docker 还需要安装一个虚拟机,所以可以简单理解为 Docker 就是复用了一下 Linux 的内核,单独构造不同的用户空间。


镜像( Image )

操作系统分为内核和用户空间。对于 Linux 而言,内核启动后,会挂载 root 文件系统为其提供用户空间支持。而 Docker 镜像( Image ),就相当于是一个 root 文件系统。比如官方镜像 ubuntu:18.04 就包含了完整的一套 Ubuntu 18.04 最小系统的 root 文件系统。

Docker 镜像是一个特殊的文件系统,除了提供容器运行时所需的程序、库、资源、配置等文件外,还包含了一些为运行时准备的一些配置参数(如匿名卷、环境变量、用户等)。镜像不包含任何动态数据,其内容在构建之后也不会被改变。

镜像构建时,会一层层构建,前一层是后一层的基础。每一层构建完就不会再发生改变,后一层上的任何改变只发生在自己这一层。比如,删除前一层文件的操作,实际不是真的删除前一层的文件,而是仅在当前层标记为该文件已删除。在最终容器运行的时候,虽然不会看到这个文件,但是实际上该文件会一直跟随镜像。因此,在构建镜像的时候,需要额外小心,每一层尽量只包含该层需要添加的东西,任何额外的东西应该在该层构建结束前清理掉。

分层存储的特征还使得镜像的复用、定制变的更为容易。甚至可以用之前构建好的镜像作为基础层,然后进一步添加新的层,以定制自己所需的内容,构建新的镜像。


容器( Container )

镜像( Image )和容器( Container )的关系,就像是面向对象程序设计中的类和实例 一样,镜像是静态的定义,容器是镜像运行时的实体。容器可以被创建、启动、停止、删除、暂停等。

每一个容器运行时,是以镜像为基础层,在其上创建一个当前容器的存储层,我们可以称这个为容器运行时读写而准备的存储层为容器存储层

按照 Docker 最佳实践的要求,容器不应该向其存储层内写入任何数据,容器存储层要保持无状态化。所有的文件写入操作,都应该使用数据卷( Volume ),或者绑定宿主目录,在这些位置的读写会跳过容器存储层,直接对宿主(或网络存储)发生读写,其性能和稳定性更高。


仓库( Repository )

镜像构建完成后,可以很容易的在当前宿主机上运行,但是,如果需要在其它服务器上使用这个镜像,我们就需要一个集中的存储、分发镜像的服务。


基本架构

Docker 采用了 C/S 架构,包括客户端和服务端。Docker 守护进程 ( Daemon )作为服务端接受来自客户端的请求,并处理这些请求(创建、运行、分发容器)。


命名空间

命名空间是 Linux 内核一个强大的特性。每个容器都有自己单独的命名空间,运行在其中的应用都像是在独立的操作系统中运行一样。命名空间保证了容器之间彼此互不影响。

Linux 为进程、网络、进程间通信,目录,主机域,用户等提供了不同的创建单独命名空间的抽象。

不同的命名空间


控制组

控制组( cgroups )是 Linux 内核的一个特性,主要用来对共享资源进行隔离、限制、审计等。只有能控制分配到容器的资源,才能避免当多个容器同时运行时的对系统资源的竞争。 控制组技术最早是由 Google 的程序员在 2006 年提出,Linux 内核自 2.6.24 开始支持。 控制组可以提供对容器的内存、CPU、磁盘 IO 等资源的限制和审计管理。


联合文件系统

Docker 技术原理之 Linux UnionFS (容器镜像)

这里我的理解就是首先是将文件分层,然后达到很多容器可以共用一个在系统上的目录的目的,封层、共享、增量式是我认为的主要的几个特点。